We’re Taking the First Steps Toward a Cure for Narcolepsy
It is elements like these that can transform everyday scientific events into a compelling cultural narrative, says Stephen Casper, a historian of neurology at Clarkson University in New York. “It has all the ingredients of something that I think physiologists and neurologists in the early part of the 20th century were looking for and hoping they would find, something that would bring together heredity, biochemistry, biophysics, neurology, and psychology.”

But there is a pattern in biomedical research of niche disorders opening up promising avenues of research that never end up helping the patients themselves, Casper adds. The narrative around narcolepsy has something missing, he says: “A good story should have a clear happy ending.”
We are still waiting for that happy ending. Even if I could get my hands on a vial of orexin-A or orexin-B, how would it get into my brain? Swallowed in solution, the enzymes in my gut would make short shrift of it, plucking off the amino acids like beads off a necklace. Injected into muscle or the bloodstream, not enough would make it through the blood–brain barrier. There have been some experiments on a nasal delivery, suggesting that sniffing orexins may be a way to smuggle some of them into the hypothalamus via the olfactory nerve, but there has been relatively little investment in this approach.
This does not mean that the pharmaceutical industry has ignored the discovery of the orexin pathway. Far from it. Within just 15 years of the Cell publication by Mignot and colleagues that linked a loss of orexin to narcolepsy, Merck had received US Food and Drug Administration (FDA) approval for suvorexant (or Belsomra as it’s known in the trade), a small molecule capable of getting through the blood–brain barrier and blocking orexin receptors.